1932

Abstract

Bacteriophages (or phages) represent one of the most persistent threats to food fermentations, particularly large-scale commercial dairy fermentations. Phages infecting lactic acid bacteria (LAB) that are used as starter cultures in dairy fermentations are well studied, and in recent years there have been significant advances in defining the driving forces of LAB–phage coevolution. The means by which different starter bacterial species defend themselves against phage predation and the chromosomal or plasmid location of the genes encoding these defense mechanisms have dictated the technological approaches for the development of robust starter cultures. In this review, we highlight recent advances in defining phage–host interactions and how phage resistance occurs in different bacterial species. Furthermore, we discuss how these insights continue to transform the dairy fermentation industry and how they also are anticipated to guide food fermentations involving plant-based alternatives in the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-060721-015928
2023-03-27
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/food/14/1/annurev-food-060721-015928.html?itemId=/content/journals/10.1146/annurev-food-060721-015928&mimeType=html&fmt=ahah

Literature Cited

  1. Achigar R, Magadán AH, Tremblay DM, Julia Pianzzola M, Moineau S 2017. Phage-host interactions in Streptococcus thermophilus: genome analysis of phages isolated in Uruguay and ectopic spacer acquisition in CRISPR array. Sci. Rep. 7:43438
    [Google Scholar]
  2. Alexandraki V, Kazou M, Blom J, Pot B, Papadimitriou K, Tsakalidou E. 2019. Comparative genomics of Streptococcus thermophilus support important traits concerning the evolution, biology and technological properties of the species. Front. Microbiol. 10:2916
    [Google Scholar]
  3. Ali Y, Kot W, Atamer Z, Hinrichs J, Vogensen FK et al. 2013. Classification of lytic bacteriophages attacking dairy Leuconostoc starter strains. Appl. Environ. Microbiol. 79:3628–36
    [Google Scholar]
  4. Ammann A, Neve H, Geis A, Heller KJ. 2008. Plasmid transfer via transduction from Streptococcus thermophilus to Lactococcus lactis. J. Bacteriol. 190:3083–87
    [Google Scholar]
  5. Binda S, Ouwehand AC 2019. Lactic acid bacteria for fermented dairy products. Lactic Acid Bacteria: Microbiological and Functional Aspects G Vinderola, AC Ouwehand, S Salminen, A von Wright 175–98. Boca Raton, FL: CRC Press
    [Google Scholar]
  6. Bintsis T. 2018. Lactic acid bacteria as starter cultures: an update in their metabolism and genetics. AIMS Microbiol. 4:665–84
    [Google Scholar]
  7. Boeck T, Zannini E, Sahin AW, Bez J, Arendt EK. 2021. Nutritional and rheological features of lentil protein isolate for yoghurt-like application. Foods 10:1692
    [Google Scholar]
  8. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K et al. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11:731–53
    [Google Scholar]
  9. Börner RA, Kandasamy V, Axelsen AM, Nielsen AT, Bosma EF. 2018. Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech. FEMS Microbiol. Lett. 366:1fny291
    [Google Scholar]
  10. Broadbent JR, Barnes M, Brennand C, Strickland M, Houck K et al. 2002. Contribution of Lactococcus lactis cell envelope proteinase specificity to peptide accumulation and bitterness in reduced-fat Cheddar cheese. Appl. Environ. Microbiol. 68:1778–85
    [Google Scholar]
  11. Bron PA, Marcelli B, Mulder J, van der Els S, Morawska LP et al. 2019. Renaissance of traditional DNA transfer strategies for improvement of industrial lactic acid bacteria. Curr. Opin. Biotechnol. 56:61–68
    [Google Scholar]
  12. Burton JP, Chanyi RM, Schultz M 2017. Common organisms and probiotics: Streptococcus thermophilus (Streptococcus salivarius subsp. thermophilus). The Microbiota in Gastrointestinal Pathophysiology MH Floch, Y Ringel, WA Walker 165–69. Boston: Academic
    [Google Scholar]
  13. Casey E, Mahony J, Neve H, Noben J-P, Dal Bello F, van Sinderen D 2015. Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1. Appl. Environ. Microbiol. 81:1319–26
    [Google Scholar]
  14. Cavanagh D, Casey A, Altermann E, Cotter PD, Fitzgerald GF et al. 2015. Evaluation of Lactococcus lactis isolates from non-dairy sources with potential dairy applications reveals extensive phenotype-genotype disparity and implications for a revised species. Appl. Environ. Microbiol. 81:3961–72
    [Google Scholar]
  15. Chapot-Chartier MP, Vinogradov E, Sadovskaya I, Andre G, Mistou MY et al. 2010. Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle. J. Biol. Chem. 285:10464–71
    [Google Scholar]
  16. Chirico D, Gorla A, Verga V, Pedersen PD, Polgatti E et al. 2014. Bacteriophage-insensitive mutants for high quality Crescenza manufacture. Front. Microbiol. 5:201
    [Google Scholar]
  17. Chopin A, Bolotin A, Sorokin A, Ehrlich SD, Chopin M-C. 2001. Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations. Nucleic Acids Res. 29:644–51
    [Google Scholar]
  18. Chopin MC, Chopin A, Bidnenko E. 2005. Phage abortive infection in lactococci: variations on a theme. Curr. Opin. Microbiol. 8:473–79
    [Google Scholar]
  19. Chumchuere S, Robinson RK. 1999. Selection of starter cultures for the fermentation of soya milk. Food Microbiol. 16:129–37
    [Google Scholar]
  20. Cichońska P, Ziarno M. 2021. Legumes and legume-based beverages fermented with lactic acid bacteria as a potential carrier of probiotics and prebiotics. Microorganisms 10:191
    [Google Scholar]
  21. Crawley AB, Henriksen ED, Stout E, Brandt K, Barrangou R. 2018. Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in lactobacilli. Sci. Rep. 8:11544
    [Google Scholar]
  22. Cui Y, Jiang X, Hao M, Qu X, Hu T. 2017. New advances in exopolysaccharides production of Streptococcus thermophilus. Arch. Microbiol. 199:799–809
    [Google Scholar]
  23. Cury J, Touchon M, Rocha Eduardo PC. 2017. Integrative and conjugative elements and their hosts: composition, distribution and organization. Nucleic Acids Res. 45:8943–56
    [Google Scholar]
  24. de la Cruz F, Frost LS, Meyer RJ, Zechner EL. 2010. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol. Rev. 34:18–40
    [Google Scholar]
  25. del Rio B, Binetti AG, Martín MC, Fernández M, Magadán AH, Alvarez MA. 2007. Multiplex PCR for the detection and identification of dairy bacteriophages in milk. Food Microbiol. 24:75–81
    [Google Scholar]
  26. Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C et al. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190:1390–400
    [Google Scholar]
  27. Deveau H, Labrie SJ, Chopin MC, Moineau S. 2006. Biodiversity and classification of lactococcal phages. Appl. Environ. Microbiol. 72:4338–46
    [Google Scholar]
  28. Dieterle ME, Bowman C, Batthyany C, Lanzarotti E, Turjanski A et al. 2014. Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis. Appl. Environ. Microbiol. 80:7107–21
    [Google Scholar]
  29. Dupont K, Janzen T, Vogensen FK, Josephsen J, Stuer-Lauridsen B. 2004. Identification of Lactococcus lactis genes required for bacteriophage adsorption. Appl. Environ. Microbiol. 70:5825–32
    [Google Scholar]
  30. Dupuis M-È, Villion M, Magadán AH, Moineau S. 2013. CRISPR-Cas and restriction–modification systems are compatible and increase phage resistance. Nat. Commun. 4:2087
    [Google Scholar]
  31. Fallico V, Ross RP, Fitzgerald GF, McAuliffe O. 2012. Novel conjugative plasmids from the natural isolate Lactococcus lactis subspecies cremoris DPC3758: a repository of genes for the potential improvement of dairy starters. J. Dairy Sci. 95:3593–608
    [Google Scholar]
  32. Fernández E, Alegría A, Delgado S, Cruz Martín M, Mayo B 2011. Comparative phenotypic and molecular genetic profiling of wild Lactococcus lactis subsp. lactis strains of the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes, isolated from starter-free cheeses made of raw milk. Appl. Environ. Microbiol. 77:5324–35
    [Google Scholar]
  33. Fernández-López C, Bravo A, Ruiz-Cruz S, Solano-Collado V, Garsin DA et al. 2014. Mobilizable rolling-circle replicating plasmids from Gram-positive bacteria: a low-cost conjugative transfer. Microbiol. Spectr. 2:5 https://doi.org/10.1128/microbiolspec.PLAS-0008-2013
    [Crossref] [Google Scholar]
  34. Frantzen CA, Kot W, Pedersen TB, Ardö YM, Broadbent JR et al. 2017. Genomic characterization of dairy associated Leuconostoc species and diversity of leuconostocs in undefined mixed mesophilic starter cultures. Front. Microbiol. 8:132
    [Google Scholar]
  35. Galia W, Perrin C, Genay M, Dary A. 2009. Variability and molecular typing of Streptococcus thermophilus strains displaying different proteolytic and acidifying properties. Int. Dairy J. 19:89–95
    [Google Scholar]
  36. Garcillán-Barcia MP, Francia MV, de La Cruz F. 2009. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol. Rev. 33:657–87
    [Google Scholar]
  37. Garneau JE, Moineau S. 2011. Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb. Cell Fact. 10:S20
    [Google Scholar]
  38. Garvey P, Fitzgerald GF, Hill C. 1995. Cloning and DNA sequence analysis of two abortive infection phage resistance determinants from the lactococcal plasmid pNP40. Appl. Environ. Microbiol. 61:4321–28
    [Google Scholar]
  39. Gasson MJ, Swindell S, Maeda S, Dodd HM. 1992. Molecular rearrangement of lactose plasmid DNA associated with high-frequency transfer and cell aggregation in Lactococcus lactis 712. Mol. Microbiol. 6:3213–23
    [Google Scholar]
  40. Goessweiner-Mohr N, Arends K, Keller W, Grohmann E, Tolmasky ME, Alonso JC. 2014. Conjugation in Gram-positive bacteria. Microbiol. Spectr. 2:4PLAS–0004-2013
    [Google Scholar]
  41. Gomes RJ, de Fatima Borges M, de Freitas Rosa M, Castro-Gómez RJH, Spinosa WA 2018. Acetic acid bacteria in the food industry: systematics, characteristics and applications. Food Technol. Biotechnol. 56:139–51
    [Google Scholar]
  42. Grohmann E, Christie PJ, Waksman G, Backert S. 2018. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol. Microbiol. 107:455–71
    [Google Scholar]
  43. Grohmann E, Muth G, Espinosa M. 2003. Conjugative plasmid transfer in Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67:277–301
    [Google Scholar]
  44. Hanemaaijer L, Kelleher P, Neve H, Franz C, de Waal PP et al. 2021. Biodiversity of phages infecting the dairy bacterium Streptococcus thermophilus. Microorganisms 9:91822
    [Google Scholar]
  45. Hickey RM, Twomey DP, Ross RP, Hill C. 2001. Exploitation of plasmid pMRC01 to direct transfer of mobilizable plasmids into commercial lactococcal starter strains. Appl. Environ. Microbiol. 67:2853–58
    [Google Scholar]
  46. Hu T, Cui Y, Qu X. 2020. Characterization and comparison of CRISPR loci in Streptococcus thermophilus. Arch. Microbiol. 202:695–710
    [Google Scholar]
  47. Iyer R, Tomar SK, Uma Maheswari T, Singh R. 2010. Streptococcus thermophilus strains: multifunctional lactic acid bacteria. Int. Dairy J. 20:133–41
    [Google Scholar]
  48. Kelleher P, Mahony J, Bottacini F, Lugli GA, Ventura M, van Sinderen D. 2019. The Lactococcus lactis pan-plasmidome. Front. Microbiol. 10:707
    [Google Scholar]
  49. Kelly WJ, Altermann E, Lambie SC, Leahy SC. 2013. Interaction between the genomes of Lactococcus lactis and phages of the P335 species. Front. Microbiol. 4:257
    [Google Scholar]
  50. Kempler GM, McKay LL. 1979. Genetic evidence for plasmid-linked lactose metabolism in Streptococcuslactis subsp. diacetylactis. . Appl. Environ. Microbiol. 37:1041–43
    [Google Scholar]
  51. Kohler V, Goessweiner-Mohr N, Aufschnaiter A, Fercher C, Probst I et al. 2018. TraN: a novel repressor of an Enterococcus conjugative type IV secretion system. Nucleic Acids Res. 46:9201–19
    [Google Scholar]
  52. Kohler V, Keller W, Grohmann E. 2019. Regulation of gram-positive conjugation. Front. Microbiol. 10:1134
    [Google Scholar]
  53. Kojic M, Jovcic B, Strahinic I, Begovic J, Lozo J et al. 2011. Cloning and expression of a novel lactococcal aggregation factor from Lactococcus lactis subsp. lactis BGKP1. BMC Microbiol. 11:265
    [Google Scholar]
  54. Koraimann G, Wagner MA. 2014. Social behavior and decision making in bacterial conjugation. Front. Cell. Infect. Microbiol. 4:54
    [Google Scholar]
  55. Kot W, Neve H, Heller KJ, Vogensen FK. 2014. Bacteriophages of Leuconostoc, Oenococcus, and Weissella. Front. Microbiol. 5:186
    [Google Scholar]
  56. Lampkowska J, Feld L, Monaghan A, Toomey N, Schjørring S et al. 2008. A standardized conjugation protocol to assess antibiotic resistance transfer between lactococcal species. Int. J. Food Microbiol. 127:172–75
    [Google Scholar]
  57. Lavelle K, Murphy J, Fitzgerald B, Lugli GA, Zomer A et al. 2018. A decade of Streptococcus thermophilus phage evolution in an Irish dairy plant. Appl. Environ. Microbiol. 84:10AEM.02855-17
    [Google Scholar]
  58. Lavelle K, Sadovskaya I, Vinogradov E, Kelleher P, Lugli GA et al. 2022. Brussowvirus SW13 requires a cell surface-associated polysaccharide to recognize its Streptococcus thermophilus host. Appl. Environ. Microbiol. 88:e0172321
    [Google Scholar]
  59. Li TT, Tian WL, Gu CT. 2021. Elevation of Lactococcus lactis subsp. cremoris to the species level as Lactococcus cremoris sp. nov. and transfer of Lactococcus lactis subsp. tructae to Lactococcus cremoris as Lactococcus cremoris subsp. tructae comb. nov. Int. J. Syst. Evol. Microbiol. 71:3 https://doi.org/10.1099/ijsem.0.004727
    [Crossref] [Google Scholar]
  60. Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ 2010. The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genom. 11:36
    [Google Scholar]
  61. Luo H, Wan K, Wang HH 2005. High-frequency conjugation system facilitates biofilm formation and pAMβ1 transmission by Lactococcus lactis. Appl. Environ. Microbiol. 71:2970–78
    [Google Scholar]
  62. Mahony J, Bottacini F, van Sinderen D, Fitzgerald GF. 2014. Progress in lactic acid bacterial phage research. Microb. Cell Fact. 13:Suppl. 1S1
    [Google Scholar]
  63. Mahony J, Frantzen C, Vinogradov E, Sadovskaya I, Theodorou I et al. 2020. The CWPS Rubik's cube: linking diversity of cell wall polysaccharide structures with the encoded biosynthetic machinery of selected Lactococcus lactis strains. Mol. Microbiol. 114:582–96
    [Google Scholar]
  64. Mahony J, Kot W, Murphy J, Ainsworth S, Neve H et al. 2013. Investigation of the relationship between lactococcal host cell wall polysaccharide genotype and 936 phage receptor binding protein phylogeny. Appl. Environ. Microbiol. 79:4385–92
    [Google Scholar]
  65. Mahony J, McDonnell B, Casey E, van Sinderen D 2016. Phage-host interactions of cheese-making lactic acid bacteria. Annu. Rev. Food Sci. Technol. 7:267–85
    [Google Scholar]
  66. Mahony J, Randazzo W, Neve H, Settanni L, van Sinderen D. 2015. Lactococcal 949 group phages recognize a carbohydrate receptor on the host cell surface. Appl. Environ. Microbiol. 81:3299–305
    [Google Scholar]
  67. Makarova KS, Koonin EV. 2007. Evolutionary genomics of lactic acid bacteria. J. Bacteriol. 189:1199–208
    [Google Scholar]
  68. McDonnell B, Hanemaaijer L, Bottacini F, Kelleher P, Lavelle K et al. 2020. A cell wall-associated polysaccharide is required for bacteriophage adsorption to the Streptococcus thermophilus cell surface. Mol. Microbiol. 114:31–45
    [Google Scholar]
  69. McKay L. 2015. An amazing journey. Annu. Rev. Food Sci. Technol. 6:1–17
    [Google Scholar]
  70. McKay LL, Baldwin KA. 1984. Conjugative 40-megadalton plasmid in Streptococcus lactis subsp. diacetylactis DRC3 is associated with resistance to nisin and bacteriophage. Appl. Environ. Microbiol. 47:68–74
    [Google Scholar]
  71. Millen AM, Romero DA. 2016. Genetic determinants of lactococcal C2viruses for host infection and their role in phage evolution. J. Gen. Virol. 97:1998–2007
    [Google Scholar]
  72. Millen AM, Samson JE, Tremblay DM, Magadán AH, Rousseau GM et al. 2019. Lactococcus lactis type III-A CRISPR-Cas system cleaves bacteriophage RNA. RNA Biol. 16:461–68
    [Google Scholar]
  73. Mills DA, Choi CK, Dunny GM, McKay LL. 1994. Genetic analysis of regions of the Lactococcus lactis subsp. lactis plasmid pRS01 involved in conjugative transfer. Appl. Environ. Microbiol. 60:4413–20
    [Google Scholar]
  74. Mills S, Griffin C, Coffey A, Meijer WC, Hafkamp B, Ross RP. 2010a. CRISPR analysis of bacteriophage-insensitive mutants (BIMs) of industrial Streptococcus thermophilus—implications for starter design. J. Appl. Microbiol. 108:945–55
    [Google Scholar]
  75. Mills S, O'Sullivan O, Hill C, Fitzgerald G, Ross RP 2010b. The changing face of dairy starter culture research: from genomics to economics. Int. J. Dairy Technol. 63:149–70
    [Google Scholar]
  76. Munsch-Alatossava P, Alatossava T. 2013. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808. Front. Microbiol. 4:408
    [Google Scholar]
  77. Nishimura J, Kawai Y, Aritomo R, Ito Y, Makino S et al. 2013. Effect of formic acid on exopolysaccharide production in skim milk fermentation by Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1. Biosci. Microbiota Food Health 32:23–32
    [Google Scholar]
  78. O'Brien FG, Yui Eto K, Murphy RJT, Fairhurst HM, Coombs GW et al. 2015. Origin-of-transfer sequences facilitate mobilisation of non-conjugative antimicrobial-resistance plasmids in Staphylococcus aureus. Nucleic Acids Res. 43:7971–83
    [Google Scholar]
  79. O'Driscoll J, Glynn F, Cahalane O, O'Connell-Motherway M, Fitzgerald GF, van Sinderen D. 2004. Lactococcal plasmid pNP40 encodes a novel, temperature-sensitive restriction-modification system. Appl. Environ. Microbiol. 70:5546–56
    [Google Scholar]
  80. O'Driscoll J, Glynn F, Fitzgerald GF, van Sinderen D. 2006. Sequence analysis of the lactococcal plasmid pNP40: a mobile replicon for coping with environmental hazards. J. Bacteriol. 188:6629–39
    [Google Scholar]
  81. Ortiz Charneco G, Kelleher P, Buivydas A, Streekstra H, van Themaat EVL et al. 2021. Genetic dissection of a prevalent plasmid-encoded conjugation system in Lactococcus lactis. Front. Microbiol. 12:680920
    [Google Scholar]
  82. Ostergaard Breum S, Neve H, Heller KJ, Vogensen FK 2007. Temperate phages TP901–1 and phiLC3, belonging to the P335 species, apparently use different pathways for DNA injection in Lactococcus lactis subsp. cremoris 3107. FEMS Microbiol. Lett. 276:156–64
    [Google Scholar]
  83. Pedersen MB, Iversen SL, Sørensen KI, Johansen E. 2005. The long and winding road from the research laboratory to industrial applications of lactic acid bacteria. FEMS Microbiol. Rev. 29:611–24
    [Google Scholar]
  84. Perez PF, de Antoni GL, Añon MC 1991. Formate production by Streptococcus thermophilus cultures. J. Dairy Sci. 74:2850–54
    [Google Scholar]
  85. Pérez T, Balcázar JL, Peix A, Valverde A, Velázquez E et al. 2011. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Int. J. Syst. Evol. Microbiol. 61:1894–98
    [Google Scholar]
  86. Philippe C, Moineau S. 2021. The endless battle between phages and CRISPR-Cas systems in Streptococcus thermophilus. Biochem. Cell Biol. 99:397–402
    [Google Scholar]
  87. Pluta R, Boer DR, Lorenzo-Díaz F, Russi S, Gómez H et al. 2017. Structural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance. PNAS 114:E6526
    [Google Scholar]
  88. Ray RC, Didier M. 2014. Microorganisms and Fermentation of Traditional Foods Boca Raton, FL: CRC Press
  89. Redzej A, Ukleja M, Connery S, Trokter M, Felisberto-Rodrigues C et al. 2017. Structure of a VirD4 coupling protein bound to a VirB type IV secretion machinery. EMBO J. 36:3080–95
    [Google Scholar]
  90. Rhee SJ, Lee J-E, Lee C-H. 2011. Importance of lactic acid bacteria in Asian fermented foods. Microb. Cell Fact. 10:S5
    [Google Scholar]
  91. Romero DA, Magill D, Millen A, Horvath P, Fremaux C. 2020. Dairy lactococcal and streptococcal phage-host interactions: an industrial perspective in an evolving phage landscape. FEMS Microbiol. Rev. 44:909–32
    [Google Scholar]
  92. Ross RP, Morgan S, Hill C 2002. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 79:3–16
    [Google Scholar]
  93. Rousseau GM, Moineau S. 2009. Evolution of Lactococcus lactis phages within a cheese factory. Appl. Environ. Microbiol. 75:5336–44
    [Google Scholar]
  94. Sadovskaya I, Vinogradov E, Courtin P, Armalyte J, Meyrand M et al. 2017. Another brick in the wall: a rhamnan polysaccharide trapped inside peptidoglycan of Lactococcus lactis. mBio 8:5e01303-17
    [Google Scholar]
  95. Salama MS, Musafija-Jeknic T, Sandine WE, Giovannoni SJ. 1995. An ecological study of lactic acid bacteria: isolation of new strains of Lactococcus including Lactococcus lactis subspecies cremoris. J. Dairy Sci. 78:1004–17
    [Google Scholar]
  96. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EP, de la Cruz F. 2010. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74:434–52
    [Google Scholar]
  97. Smit G, Smit BA, Engels WJM. 2005. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev. 29:591–610
    [Google Scholar]
  98. Somerville V, Berthoud H, Schmidt RS, Bachmann H-P, Meng YH et al. 2021. Functional strain redundancy and persistent phage infection in Swiss hard cheese starter cultures. ISME J. 16:388–99
    [Google Scholar]
  99. Spinelli S, Veesler D, Bebeacua C, Cambillau C. 2014. Structures and host-adhesion mechanisms of lactococcal siphophages. Front. Microbiol. 5:3
    [Google Scholar]
  100. Sun Z, Harris HMB, McCann A, Guo C, Argimón S et al. 2015. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat. Commun. 6:8322
    [Google Scholar]
  101. Sybesma W, Hugenholtz J, de Vos WM, Smid EJ. 2006. Safe use of genetically modified lactic acid bacteria in food. Bridging the gap between consumers, green groups, and industry. Electron. J. Biotechnol. 9:4424–48
    [Google Scholar]
  102. Szymczak P, Filipe SR, Covas G, Vogensen FK, Neves AR, Janzen T. 2018. Cell wall glycans mediate recognition of the dairy bacterium Streptococcus thermophilus by bacteriophages. Appl. Environ. Microbiol. 84:23e01847-18
    [Google Scholar]
  103. Tangyu M, Muller J, Bolten CJ, Wittmann C. 2019. Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Appl. Microbiol. Biotechnol. 103:9263–75
    [Google Scholar]
  104. Theodorou I, Courtin P, Palussière S, Kulakauskas S, Bidnenko E et al. 2019. A dual-chain assembly pathway generates the high structural diversity of cell-wall polysaccharides in Lactococcus lactis. J Biol. Chem. 294:17612–25
    [Google Scholar]
  105. Theodorou I, Courtin P, Sadovskaya I, Palussiere S, Fenaille F et al. 2020. Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers. J. Biol. Chem. 295:5519–32
    [Google Scholar]
  106. Urbonaviciene D, Viskelis P, Bartkiene E, Juodeikiene G, Vidmantiene D. 2015. The use of lactic acid bacteria in the fermentation of fruits and vegetables—technological and functional properties. Biotechnology D Ekinci 135–64. London: Intech Open
    [Google Scholar]
  107. van der Lelie D, Chavarri F, Venema G, Gasson MJ. 1991. Identification of a new genetic determinant for cell aggregation associated with lactose plasmid transfer in Lactococcus lactis. Appl. Environ. Microbiol. 57:201–6
    [Google Scholar]
  108. Vandecraen J, Chandler M, Aertsen A, Van Houdt R. 2017. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 43:709–30
    [Google Scholar]
  109. Ventura M, Zomer A, Canchaya C, O'Connell-Motherway M, Kuipers O et al. 2007. Comparative analyses of prophage-like elements present in two Lactococcus lactis strains. Appl. Environ. Microbiol. 73:237771–80
    [Google Scholar]
  110. Verreault D, Gendron L, Rousseau GM, Veillette M, Massé D et al. 2011. Detection of airborne lactococcal bacteriophages in cheese manufacturing plants. Appl. Environ. Microbiol. 77:491–97
    [Google Scholar]
  111. Wegmann U, Overweg K, Jeanson S, Gasson M, Shearman C. 2012. Molecular characterization and structural instability of the industrially important composite metabolic plasmid pLP712. 1582936–45
  112. Whitehead HR. 1935. The occurrence of bacteriophage in cultures of lactic streptococci. N. Z. J. Dairy Sci. Technol. 16:319–20
    [Google Scholar]
  113. Wittebole X, De Roock S, Opal SM. 2014. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5:226–35
    [Google Scholar]
  114. Yang L, Li W, Ujiroghene OJ, Yang Y, Lu J et al. 2020. Occurrence and diversity of CRISPR loci in Lactobacillus casei group. Front. Microbiol. 11:624
    [Google Scholar]
  115. Zeng L, Skinner SO, Zong C, Sippy J, Feiss M, Golding I. 2010. Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141:682–91
    [Google Scholar]
  116. Zheng J, Ruan L, Sun M, Gänzle M. 2015. A genomic view of lactobacilli and pediococci demonstrates that phylogeny matches ecology and physiology. Appl. Environ. Microbiol. 81:7233–43
    [Google Scholar]
  117. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. 2020. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70:2782–858
    [Google Scholar]
/content/journals/10.1146/annurev-food-060721-015928
Loading
/content/journals/10.1146/annurev-food-060721-015928
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error